Extremely fast prey capture in pipefish is powered by elastic recoil.

نویسندگان

  • Sam Van Wassenbergh
  • James A Strother
  • Brooke E Flammang
  • Lara A Ferry-Graham
  • Peter Aerts
چکیده

The exceptionally high speed at which syngnathid fishes are able to rotate their snout towards prey and capture it by suction is potentially caused by a catapult mechanism in which the energy previously stored in deformed elastic elements is suddenly released. According to this hypothesis, tension is built up in tendons of the post-cranial muscles before prey capture is initiated. Next, an abrupt elastic recoil generates high-speed dorsal rotation of the head and snout, rapidly bringing the mouth close to the prey, thus enabling the pipefish to be close enough to engulf the prey by suction. However, no experimental evidence exists for such a mechanism of mechanical power amplification during feeding in these fishes. To test this hypothesis, inverse dynamical modelling based upon kinematic data from high-speed videos of prey capture in bay pipefish Syngnathus leptorhynchus, as well as electromyography of the muscle responsible for head rotation (the epaxial muscle) was performed. The remarkably high instantaneous muscle-mass-specific power requirement calculated for the initial phase of head rotation (up to 5795 W kg(-1)), as well as the early onset times of epaxial muscle activity (often observed more than 300 ms before the first externally discernible prey capture motion), support the elastic power enhancement hypothesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Insights into Muscle Function during Pivot Feeding in Seahorses

Seahorses, pipefish and their syngnathiform relatives are considered unique amongst fishes in using elastic recoil of post-cranial tendons to pivot the head extremely quickly towards small crustacean prey. It is known that pipefish activate the epaxial muscles for a considerable time before striking, at which rotations of the head and the hyoid are temporarily prevented to allow energy storage ...

متن کامل

Suction is kid's play: extremely fast suction in newborn seahorses.

Ongoing anatomical development typically results in a gradual maturation of the feeding movements from larval to adult fishes. Adult seahorses are known to capture prey by rotating their long-snouted head extremely quickly towards prey, followed by powerful suction. This type of suction is powered by elastic recoil and requires very precise coordination of the movements of the associated feedin...

متن کامل

Thermal effects on the dynamics and motor control of ballistic prey capture in toads: maintaining high performance at low temperature.

Temperature has a strong influence on biological rates, including the contractile rate properties of muscle and thereby the velocity, acceleration and power of muscle-powered movements. We hypothesized that the dynamics of movements powered by elastic recoil have a lower thermal dependence than muscle-powered movements. We examined the prey capture behavior of toads (Bufo terrestris) using high...

متن کامل

Short communication:The relationships between gut length and prey preference of three pipefish (Syngnathus acus, Syngnathus typhle, Nerophis ophidion Linnaeus, 1758) species distributed in Aegean Sea, Turkey

In this research, gut lengths and numerical occurrence of gut contents (NO%) of Syngnathus acus, Syngnathus typhle and Nerophis ophidion were examined. The specimens were captured with beach seine net in different habitats (vegetated and sandy-vegetated etc.) at the coasts of Aegean Sea between 2006-and 2008. The zooplanktonic preys were mostly consumed by Syngnathus acus and Nerophis ophidion,...

متن کامل

The mechanics of elastic loading and recoil in anuran jumping.

Many animals use catapult mechanisms to produce extremely rapid movements for escape or prey capture, resulting in power outputs far beyond the limits of muscle. In these catapults, muscle contraction loads elastic structures, which then recoil to release the stored energy extremely rapidly. Many arthropods employ anatomical 'catch mechanisms' to lock the joint in place during the loading perio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the Royal Society, Interface

دوره 5 20  شماره 

صفحات  -

تاریخ انتشار 2008